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S1. CLOG STATISTICS IN THE FOUR-STATE MODEL

A. Distribution of the flow duration with N pauses

As noted in the main text, the total time before clogging, given the trajectory has exactly N pauses is the sum of
N + 1 flow times and N pause times,

TN = τ0F +

N∑
i=1

τ iF + τ iP , (S1)

where τ iF and τ iP denote the duration of each flow and pause, which are exponentially distributed with mean τF/P :

τ iF/P ∼ EF/P (t) = τ−1
F/P exp(−t/τF/P ). The resulting distribution for TN is given by a convolution of these exponential

distributions,

pTN
(t) = EF (t) ∗ EF (t) ∗ · · · ∗ EF (t)︸ ︷︷ ︸

N+1 times

∗ EP (t) ∗ · · · ∗ EP (t)︸ ︷︷ ︸
N times

= Gamma(N + 1, τF) ∗Gamma(N, τP)

=

∫ t

0

sN

N ! τN+1
F

e−s/τF · (t− s)N−1

(N − 1)! τNP
e−(t−s)/τP ds.

(S2)

Here ∗ denotes the convolution, which is written out explicitly in the second line. We use the fact that the sum of N
identically distributed exponential random variables follows a Gamma distribution. Note that the integration limits
are finite because the Gamma distribution is zero for negative times. To evaluate the convolution, we separate the
integrand into three terms,

pTN
=

∫ t

0

e−t/tP−s/T

N !(N − 1)!τN+1
F τNP

[
t

2
sN−1(t− s)N−1 − 1

2NT
sN (t− s)N +

sN−1(t− s)N−1[NT (2s− t) + s(t− s)]

2NT

]
,

(S3)

where T = τP τF /(τP − τF ). The final term integrates to: exp(−s/T )sN (t− s)N/(2N)
∣∣s=t

s=0
= 0. The first two terms

can be expressed in terms of the modified Bessel function of the first kind Iα(x), leading to

pTN
(t) =

√
π

2N !

tN+1/2T N−1/2

τN+1
F τNP

exp

(
− t(τF + τP )

2τF τP

)[
IN−1/2

(
t

2T

)
− IN+1/2

(
t

2T

)]
, (S4)

The first few distributions are,

pT0(t) = τ−1
F e−t/τF ,

pT1
(t) =

T 2

τ2F τP
e−t/τP − tT + T 2

τ2F τP
e−t/τF ,

pT2
(t) =

tT 3 − 3T 4

τ3F τP
e−t/τP +

t2T 2 + 4tT 3 + 6T 4

2τ3F τ
2
P

e−t/τF .

(S5)

This analytical result is compared to the clogging time distributions (conditioned on having N pauses) in Fig. 2(c) of
the main text.

∗ D.H. and S.D. contributed equally to this work.
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B. Ensemble distribution of the flow duration

The distribution of flow duration across the entire ensemble of flow trajectories is given by pTN
(t) averaged over

the the geometric distribution for the number of pauses p(N) = p(1− p)N ,

pT (t) =

∞∑
N=0

pTN
(t)p(1− p)N . (S6)

As in the main text, p = r1/(r0+r1) is the probability of clogging when the flow rate fluctuates toward zero (ri are the
switching rates for the hidden variable). This average can be computed in Fourier space. Defining the Fourier transform
f(ω) = F [f(t)] =

∫∞
−∞ dtf(t) exp(iωt), the transformed exponential distributions are EF/P (ω) = 1/(1−iωτF/P ). After

Fourier transforming, the convolution in Eq. (S2) becomes a product,

pT (ω) =

∞∑
N=0

1

(1− iωτF )N+1

1

(1− iωτP )N
p(1− p)N

=
p(1− iτPω)

p− iω(τF + τP )− τF τPω

(S7)

Taking the inverse Fourier transform leaves us with the distribution quoted in the main text [Eq. (4)],

pT (t) =
c

τ+
e−t/τ+ +

(1− c)

τ−
e−t/τ− , (S8)

where τ−1
± are the poles of Eq. (S7)

τ± =
2τF τP

τF + τP ±
√
(τF + τP )2 − 4pτF τP

(S9)

and the relative weighting c is given by,

c =
1

2
+

(2p− 1)τP − τF

2
√

(τF + τP )2 − 4pτF τP
. (S10)

We find that τF increases with outlet size D, while τP is approximately constant (Fig. S1). As a result, for large
outlets we have τF ≫ τP , and the competing time scales become cτ+ ≈ τF /p and (1 − c)τ− ≈ p(1 − p)τ3P /τ

2
F , with

the former dominating, resulting in the established exponentially distributed clogging time in this regime [1–5].

C. Distribution of mass ejected

As mentioned in the main text, because no mass is ejected during the pauses, the total mass ejected over the duration
of the entire flow remains exponentially distributed. Following the calculations in the preceding sections, we assume
mF is the average mass ejected during each flow (preceding a pause or clog). Then the mass ejected in a flow with

N pauses is MN =
∑N

i=0 m
i
F ; again we assume mi

F are exponentially distributed, mi
F ∼ EM (m) = m−1

F exp(m/mF ),
consistent with Fig. S1(a). It follows that the distribution of mass ejected (given N pauses) is

pMN
(m) = EM (m) ∗ EM (m) ∗ · · · ∗ EM (m)︸ ︷︷ ︸

N+1 times

= Gamma(N + 1,mF ). (S11)

The distribution of mass ejected across all trajectories is (in Fourier space),

pM (ω) =

∞∑
N=0

1

(1− iωmF )N+1
p(1− p)N =

1

1− iωmF /p
, (S12)

which corresponds to an exponential distribution with mean mF /p = mF ⟨N + 1⟩ (the number of flows is one more
than the number of pauses), as quoted in the main text.
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FIG. S1. Time scales, mass ejected, and outlet-size dependence. (a) The distributions of flow duration and mass ejected before
each pause or clog (normalized by their respective means τF = 0.77 s and mF = 69.4mL). Each closely follow an exponential
distribution. (b) Distribution of pause duration. Note that long pauses (≳ 5s) are cut off due to the criteria for identifying
clogs during automated data collection. The solid line is exponential fit with mean τP = 1.26 s, adjusted to account for the
cutoff. Data in (a-b) are from the D = 3.86dL dataset. (c) Outlet size dependence of the average flow and pause timescales
τF and τP and the clog probability p. (d) Outlet size dependence of the clogging timescales in Eq. (S8) that contribute to the
mean ⟨T ⟩ = cτ+ + (1− c)τ−. For larger outlets the single timescale cτ+ becomes increasingly dominant.

S2. ADDITIONAL DATA: FLOW AND PAUSE TIMESCALES, MASS EJECTED,
AND OUTLET-SIZE DEPENDENCE

The four-state model calculations in the preceding sections assume that the flow duration and mass ejected preceding
a clog or pause as well as the pause duration are each exponentially distributed. Fig. S1(a) shows that the flow duration
and mass ejected before each pause or clog do closely follow an exponential distribution (with means τF = 0.77s and
mF = 69.4mL respectively). The pause duration also appears to be exponential [Fig. S1(b)], at least at short times.
In this distribution, long-lived pauses ≳ 5s are cutoff because they are classified as permanent clogs during the
automated data collection. Previous work on vibrated granular systems suggests the tail of the pause-distribution
decays as a power-law [6–9], with exponent decreasing with vibration amplitude. In these studies, however, the
power-law scaling is only satisfied for very large and rare pause times that accounting for less than 1/100th to 1/10th

of pauses depending on experimental conditions. Thus we expect that the exponential approximation will be suitable
for capturing statistics of all trajectories except those with very long pauses.

The predictions shown in Fig. 2 of the main text [Eqs. (S4), (S8), and (S12)] also hold across each of the outlet sizes
in our dataset D/dL = 3.6, 3.74, 3.86, 3.98, and 4.15. Fig. S1(c) shows how the empirical flow and pause timescales
τF and τP as well as the clog probability p vary with outlet size. Unsurprisingly, the flow duration τF increases and
the clog probability p decreases with outlet size. When the outlet is larger, it takes longer to form an arch and these
arches are more susceptible to spontaneous declogging. The pause duration τP is approximately constant with outlet
size, though we expect it will decrease if the outlet is large enough; again, arches tend to be less stable when the
outlet is larger.

Fig. S1(d) shows the contribution of the two timescales in Eq. (S8), to the mean total clogging time, ⟨T ⟩ =
cτ+ + (1 − c)τ−. As the outlet size increases, the first time-scale becomes increasingly dominant ⟨T ⟩ ≈ cτ+ and
non-exponential features of the clog time diminish. As mentioned in Section S1B, the increase in τF in Fig. S1(c)
implies this behavior: for τF ≫ τP we have cτ+ ≈ τF /p and (1− c)τ− ≈ p(1−p)τ3P /τ

2
F , the first of which is dominant.
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S3. FITTING AND ANALYSIS OF THE FOKKER-PLANCK EQUATION

In this section we describe the flow-rate distribution fits and analytical results following from the Fokker-Planck
equation for our hidden variable model [Eq. (5) in the main text]. Writing out the dependence on the hidden variable
state y = 0, 1 explicitly, the Fokker-Planck equation is given by,

∂P0

∂t
= − ∂

∂x
(fP0) +

∂2

∂x2
(gP0) +

x

x0
(r1P1 − r0P0) θ(x)

∂P1

∂t
= − ∂

dx
(fP0) +

∂2

∂x2
((g + ϵ)P0) +

x

x0
(r0P0 − r1P1) θ(x),

(S13)

where θ(x) is the Heaviside function. Since there is an absorbing state for y = 0, P0(x) is defined for x > 0, while
P1(x) is defined for all x. The final term in these equations captures the flow of probability between P0 and P1 based
on the dynamics of the hidden variable y. We denote the coupled Fokker-Planck operator by LFP: ∂P/∂t = LFPP,
where P = {P0, P1}.

A. Deterministic force and flow-rate distribution fitting

The time-dependent flow-rate distributions can be expanded as, P(x, t) =
∑∞

i=0 ai exp(−λit)P
i(x), in terms of

eigenfunctions Pi(x) and corresponding eigenvalues −λi of the Fokker-Planck operator: LFPP
i(x) = −λiP

i(x). The
constants ai are determined by the initial distribution and the eigenvalues are ordered: 0 < λ0 < λ1 < . . . , so that
P0(x) is the slowest decaying mode. Assuming a separation of time-scales λ0 ≪ λ1, the distribution of clog times is
exponential pT (t) ≈ λ0 exp(−λ0t), which is consistent with our measurements except at very short times [main text,
Fig. 2(d)]. The measured flow-rate distribution is then well approximated by the sum of the components of the slowest
decaying mode P 0

0 (x) + P 0
1 (x). All higher-order eigenfunctions quickly decay and the clogging process is dominated

by the exponential decay of this single mode.
To compute and fit the leading eigenfunction to measured flow-rate distributions, we discretize the Fokker-Planck

operator LFP over a range of x that is much larger than all measured flow rates. We use the force,

f(x) = − (x− x0)x
2

τ0x2
0

· x2 − 2ax+ a2 + b2

x2
0 − 2ax0 + a2 + b2

, (S14)

which has roots at x0 and 0 that respectively correspond to the steadily flowing state and the clogged state. The later
is taken to be quadratic, so that the clogged state is stable to negative perturbations (flow upward in the hopper), but
unstable to positive perturbations (that re-initiate the flow). We also fit forces of the form f(x) ∝ (x−x0)(Ax+Bx2),
but the quadratic term was always dominant and including the linear term does not considerably reduce the fitting
loss. The second term in Eq. (S14) (denoted Ψ(x) in the main text) is positive-definite, allowing for deformation of
the force without introducing new roots. The factors in the denominator fix the units; τ0 is the harmonic decay time
near x0.

Using Eq. (S14) for the force and linear noise g(x) = ∆x/x0, fitting flow-rate distributions involves tuning 4
parameters x0, a, b,∆τ0 (the eigenfunction is independent of the overall time-scale). To fix the scale of ∆ and τ0, we
match the autocorrelation time of the flow rate trajectories to that obtained from simulations, finding τ0 ≈ 20− 22ms
with no clear dependence on D over this small range of outlet-sizes. We also fix p = r1/(r0 + r1) to match the
measured geometric pause statistics and choose r0 = (10τ0)

−1 so that the switching time-scale for y is slower than
the flow-rate correlation time but faster than the flow and pause times scales. The fit distributions for various outlet
sizes are shown in Fig. 3 of the main text.

B. Large outlet clogging time and effective noise scaling relation

As shown in Section S2, in the large outlet regime [where τF grows, see Fig. S1(c)], the average clogging time is
⟨T ⟩ ≈ τF /p. To compute τF from the Fokker-Planck equation, we note that the flow duration before a pause or clog
does not depend significantly on ϵ ≪ 1, the noise added by the hidden mode y = 1. In other words, while the hidden
variable state determines the stability of the clog, it has very little impact on the flow preceding a clog or pause.
Therefore, we can fix y = 0 and study the one-dimensional Fokker-Planck equation,

∂P0

∂t
= − ∂

∂x
(fP0) +

∂2

∂x2
(gP0). (S15)
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The mean time to hit a clog or pause state (x = 0) starting from initial flow rate xi satisfies the adjoint equation [10],

f(xi)τ
′
F (xi) + g(xi)τ

′′
F (xi) = −1, (S16)

with and absorbing boundary at x = 0, τF (0) = 0 and reflecting boundary at infinity, limx→∞ τ ′F (x) = 0. The solution
to this equation is

τF (xi) =

∫ xi

0

dy

∫ ∞

y

dz
eΘ(y)−Θ(z)

g(z)
, (S17)

where Θ(x) = −
∫ x

0
f(x′)/g(x′) dx′. In our flow-rate distribution fits, the steady flow rate x0 and noise amplitude

grow proportionally so that the relative noise ∆̃ = ∆τ0/x
2
0 shrinks for larger outlet sizes [see inset of Fig. 3(b) in the

main text]. Thus when D/dL ≫ 1, we have ∆̃ ≪ 1, which appears in the denominator of Θ. To approximate the
flow duration in this regime, we can therefore evaluate the integrals in Eq. (S17) using a saddle-point approximation.
For this analysis we consider deterministic force f(x) = −x2(x−x0)Ψ(x)/(τ0x

2
0) with an arbitrary deformation factor

Ψ(x). We require Ψ(x) > 0 and Ψ(x0) = 1 so that the force has no additional roots and the linear correlation time
near x0 is always τ0.
The maximum of the exponent Θ(y)−Θ(z) in Eq. (S17) within the integration domain occurs at y0 = 0, z0 = x0.

To quadratic order in δy = y − y0, δz = z − z0, the exponent becomes

Θ(y)−Θ(z) = −Θ(x0)−
Ψ(0)

2∆τ0
δy2 − 1

2∆τ0
δz2. (S18)

Thus, for ∆̃ ≪ 1 the integral in Eq. (S17) reduces to a tightly peaked Gaussian integral around (y0, z0). Evaluating
the integral we find,

⟨T ⟩ ∼ τF /p ∼ 2πτ0p
−1√

Ψ(0)
e−Θ(x) =

2πτ0p
−1√

Ψ(0)
exp

(
1

∆̃

∫ 1

0

x̃(1− x̃)Ψ(x̃x0)dx̃

)
, (S19)

where in the final expression, we have written the exponent explicitly in terms of the effective noise ∆̃ and a constant
integral. For example, with the force used to fit the experimental flow-rate distributions [Eq. (S14), with Ψ(x) =
(x2 − 2ax+ a2 + b2)/(x2

0 − 2ax0 + a2 + b2)], we have

⟨T ⟩ ∼ 2πτ0p
−1

√
1 +

1− 2ã

ã2 + b̃2
exp

(
1

∆̃

[
1

6
+

1

60

10ã− 7

(ã− 1)2 + b̃2

])
, (S20)

where ã = a/x0 and b̃ = b/x0. Suppressing the constants, both Eqs. (S19) and (S20) have the form ⟨T ⟩ ∼
τ0p

−1C exp(c∆̃−1) quoted in the main text.

C. Clog prediction: first passage to zero flow rate and hidden variable dynamics

Finally, we can use the Fokker-Planck equation to explore whether it is possible to predict clogs given the current
flow rate x and the state of the hidden variable y. To this end, we compute p0(x), the probability of flow rate hitting
zero (either a pause or a clog) before returning to steady flow x0, starting from current flow rate x. We also compute
the average time t0(x) to hit zero flow (conditioned on this occurring before the system resumes steady flow x = x0),
as a measure of how far in advance predictions can be made.

Just as in the preceding section, the flow trajectories before hitting the pause or clog (x = 0) or the steady flow
state (x = x0) are nearly independent of the hidden variable state y, since the ϵ addition to the noise is only relevant
very close to 0. Therefore, we again focus on analyzing the one-dimensional system, Eq. (S15). The zero-flow hitting
probability and time satisfy adjoint equations similar to Eq. (S16), but with two absorbing boundaries (i.e. the
zero-flow x = 0 and steady flow x = x0 states) [10],

f(x)p′0(x) + g(x)p′′0(x) = 0 f(x)ϑ′
0(x) + g(x)ϑ′′

0(x) = −p0(x). (S21)

Here ϑ0(x) = p0(x)t0(x) and the boundary conditions are p0(0) = 1, p0(x0) = 0, and ϑ0(0) = ϑ0(x0) = 0. We
numerically integrate these equations with force and noise parameters taken from the fits to the experimental flow-
rate distributions at each outlet size.
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FIG. S2. Predicting clogs. (a) The probability p0(x) (solid curves) and average time t0(x) (dashed curves) for a granular
flow with current rate x = W/mL to hit zero flow (clog or pause) before returning to steady flow rate x0. Curves computed
by numerically solving Eq. (S21) with parameters fixed by fitting of the flow-rate distributions (main text, Fig. 3). The black
dashed line shows the threshold for 75% probability at x ≈ 10 s−1. (b) Distribution of times ∆t since the last change in the
hidden state y before a clog or pause. The distribution has two exponential time-scales 2/(r0 + r1) and τP , corresponding
respectively to the average y switching rate and to cases where the flow un-pauses and quickly re-pauses without y changing
state. The y-state enables distinguishing incipient clogs from pauses ⟨∆t⟩ = 0.27s ahead of time on average. Data from 105

simulated trajectories of the model fit to D = 3.86dL trajectories.

Fig. S2(a) shows both the zero-flow hitting probability p0(x) and hitting time t0(x) for the full range of initial
conditions 0 < x < x0. Accurate prediction of non-flowing events remains difficult due to the Markovian nature for
the dynamics. For example, there is only a 75% chance to hit zero flow even when the flow rate is already quite slow
(x < 10 s−1). Fig. S2(a) also shows the average time to hit zero flow is similar to the flow rate correlation time. When
the prediction accuracy is 75%, the prediction time is less than 2τ0 ≈ 40 ms.

Clog prediction is further confounded by the presence of pauses: even if the flow ceases, will it restart at a later
time? In our model, the hidden variable freezes as the flow rate approaches zero, often well before a pause or clog [e.g.
Fig.1(c) in the main text]. Fig. S2(b) shows the distribution of ∆t = tx=0− tδy, the time interval between the onset of
a pause or clog and the previous change in the state of y; we find ⟨∆t⟩ = 0.27 s ≈ 12τ0. If one could reliably predict
zero-flow events, then monitoring the hidden variable state y would enable advanced determination of whether the
incipient clog will be stable or unstable.

S4. CONFIGURATIONAL FEATURES OF THE HIDDEN MODE: DISTINGUISHING PAUSE AND
CLOG MICROSTATES USING ARCH CONFIGURATIONS AND STATISTICS

To investigate the microscopic configurational features of the hidden mode, we extract pause and clog arches
and study various statistics describing the arch shapes. Pauses are isolated in flow trajectories by averaging the
instantaneous flow rate over a seven frame (∼ 0.05 s) moving window. The start and end of a pause are identified by
the averaged flow-rate trajectory crossing a threshold 3 s−1 (∼ 3% of the steady flow rate x0). Results are robust to
reasonable variations in the averaging window and threshold. For pauses we analyze the frame midway through the
duration of the pause, while for clogs we use the final recorded frame. To detect arches from these snapshots, we first
compute a Delaunay triangulation of the grain centers and remove links with center-to-center distance larger than
120% of the large grain diameter. Cornerstones of the arch are identified as the grains closest to the corners of the
outlet. The arch is then detected by computing the shortest distance path (on the triangulated lattice) between these
two grains.

Isolated arches are used to compute the statistics shown in Fig. 4 in the main text. The positional densities are
computed by averaging images of the arches across the clog and pause populations. Fig. 4(b) in the main text shows
the difference in these densities. The arch statistics are defined as follows: (1) Height, h: the distance from the hopper
floor to the center of the grain with largest vertical position. (2) Width, w: the maximum horizontal distance between
two grain centers in the arch. (3) Angles, θ: the signed angle between vectors connecting consecutive grain centers
[see Fig.4(a)]. Negative angles correspond to inverted “defect” grains with convex orientation opposing the typical
arch curvature. For each arch we compute the minimum angle (the largest defect) and the standard deviation of the
angles. The former quantifies the most likely failure mode for the arch, while the later quantifies the irregularity in
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FIG. S3. Distributions of arch statistics for pauses (blue) and clogs (orange). (a) Arch width, w, (b) Arch height, h, (c)

Number of arch grains, Narch, (d) Standard deviation of arch angles,
√

⟨θ2⟩ − ⟨θ⟩2, (e) Minimum arch angle, min(θ), and (f)
Maximum arch angle, max(θ). Distribution means for (a), (b), (d), and (e) are shown in main text Fig. 4(c) and (d). For pause
arches the distributions for each statistic are nearly identical if binned based on pause duration.

arch shape. In addition to these statistics, which were discussed in the main text, we also computed the number of
grains in each arch Narch and the maximum arch angle.

Fig S3 shows distributions for each of these statistics for the clog and pause arches. While there is a large variation
in arch statistics within each population the means are distinctly separated as demonstrated in the main text, Fig. 4(c)
and (d); due to our large sample size, the standard error in these means is very small. Individual statistics do not
fully separate the two populations; future work might focus in unveiling a more complete understanding of the grain
microscopics and their impact on clog stability and dynamics. Beyond the statistics used here, developing measures
or order parameters for more subtle configurational features may be a key step toward future progress. For example,
recent work has identified chaining structures as a useful measure for studying clog formation [11]. Distinguishing
permanent clogs from temporary pauses is similar to identifying flowing versus clogging microstates. For the latter
problem, interpretable machine learning algorithms [12] have seen some success. If these methods can be extended to
classify clogs from pauses, they may help to identify additional configurational features that determine arch stability.
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